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Differential cross sections are calculated for the elastic scattering of heavy nuclei by heavy nuclei and the 
results are compared with experiment. The long-range part of the nucleus-nucleus interaction is assumed 
to be representable by a two-body potential, and the attempt is made to calculate the latter in terms of the 
experimentally determined nucleon-nucleus optical-model potential extrapolated to negative energies and an 
adjustable reduced width parameter which determines the probability of finding individual nucleons at the 
surface of each nucleus. The short-range part of the nucleus-nucleus interaction is represented schematically 
by a complex potential or an ingoing wave boundary condition, the justification for which as a representation 
of the optical-model potential is given below. Reasonable agreement with experiment is obtained for the 
experimental data considered, i.e., those for C12-016, N14-N14, and C12-N14 if the average-reduced-width 
parameter equal to about one-fifth the corresponding single-particle value is employed. 

I. INTRODUCTION 

TH E inherent complexities in the interaction of one 
heavy nucleus with another due to the many 

particles involved, as well as lack of precise knowledge 
of the interparticle forces present formidable obstacles 
to the complete theoretical investigation of the elastic 
scattering. 

Various simplified models have been employed in the 
literature. In the first attempt, Reynolds and Zucker1 

analyzed their N14—N14 data in terms of the so-called 
"sharp cutoff model" which had been developed by 
Blair2 for the analysis of a-particle scattering. This 
procedure, recognizing that a major part of the scatter
ing arises from the "shadow scattering" caused by 
strong absorption for close approach of the heavy 
nuclei, assumes that in the partial-wave expansion of 
the Coulomb amplitude, all partial waves from Z = 0 
up to a critical value Z,max are completely absorbed and 
those partial waves corresponding to larger L are un
modified. The distance of closest approach for a classical 
particle of angular momentum Lmz,Ji is then assumed 
to determine the nuclear radius. Reynolds and Zucker's 
analysis resulted in a good representation of experi
mental data employing a nuclear radius of 1.66X^41/3 F, 
somewhat larger than might have been expected. 
Porter3 analyzed the N14—N14 scattering by means of 
an optical potential with the shape suggested by Woods 
and Saxon for nucleon-nucleus scattering, the param
eters being adjusted to fit experiment. A similar analysis 
of their extensive C12—N14 scattering data has recently 
been carried out by Kuehner and Almqvist.4 
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3 C. E. Porter, Phys. Rev. 112, 1722 (1958). # 4 J. A. Kuehner and E. Almqvist, Proceedings of the Third 
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In the work quoted above as well as in other available 
treatments the nucleus-nucleus interaction is considered 
almost entirely phenomenologically. The elastic scatter
ing data combined with other evidence concerning the 
approximate magnitude of nuclear radii form the only 
guides in arriving at the phenomenological models. In 
the work reported below an attempt is made to correlate 
the nucleus-nucleus elastic scattering data with nucleon-
nucleus elastic scattering information by deriving from 
the latter an effective long-range nucleus-nucleus 
interaction potential and to employ this potential as a 
guide in the nucleus-nucleus scattering analysis. The 
short-range nucleus-nucleus interaction is, on the other 
hand, treated phenomenologically. In view of the 
desirability of comparing any theoretical estimate of 
long-range nucleus-nucleus interactions as directly as 
possible with corresponding elastic scattering data one 
of the main objectives of the present work was to 
investigate how much information on the long-range 
part of the nucleus-nucleus interaction can be obtained 
from the elastic scattering and to what extent the 
unknown short-range part has to be brought in. 

A long-range two-body interaction potential is de
rived making use of the experimental nucleon-nucleus 
separation energies and the nucleon-nucleus elastic 
scattering optical-model potential determined from the 
elastic scattering experiments of protons on various 
nuclei.5 For each nucleus there is introduced into the 
calculation a free parameter which is related to the 
average value of one of the bound protons' or neutrons' 
wave functions at the nuclear surface. The parameter 
is adjusted to give the best fit to the experimental 
nucleus-nucleus elastic scattering angular distribution. 
This adjustment amounts to a determination of the 
average reduced width of the transferred particles in 
the emitting and receiving nuclei. I t would be un
realistic to suppose that a two-body potential could 
really be taken seriously for separation distances corre-

Ghiorso, R. M. Diamond, and H. E. Conzett (University of Cali
fornia Press, Berkeley, California, 1963). 

5 The authors wish to thank Professor G. Breit for suggesting 
the approach outlined below. 
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sponding to overlap of the nuclear matter. For such 
distances, however, the interaction of the two nuclei is 
dominated by the strong absorption and if it is assumed 
that this part of the interaction can be represented 
schematically by complex two-body potentials or 
boundary conditions, then it can be shown under 
certain conditions that the resulting cross section is 
very insensitive to the assumed form of that part of 
the interaction. 

In Sec. I I are outlined the theory and assumptions 
involved in the calculation of the potential tails for the 

N i 4 _ N u N 1 4 - C 1 2 , and C 1 2 - 0 1 6 systems; in Sec. I l l 
a comparison is made with experiment. 

A list of the most frequently used symbols is given 
below. 

^ L nucleus-nucleus radial wave functions, as 
defined in Eq. (16). 

l,L nucleon orbital angular momenta relative to 
emitter and receiver nuclei, respectively. 

R center-to-center distance of the two complex 
nuclei. 

AE(R) change in the energy eigenvalue of the two 
complex nuclei which vanishes as R —» °o. 

tyWjfr undistorted and distorted many-body wave 
functions describing the two-nucleus system. 

\//(0\\p undistorted and distorted single-nucleon 
wave functions. 

cs(°\cp(0) nucleon wave function normalization param
eters, defined in Eq. (3); having dimensions 
of (length)"372. Subscripts s and p denote 
angular momenta 0 and 1 with respect to the 
emitter nucleus. 

m^ the mass of a nucleon, reduced mass of the 
nucleus-nucleus system, respectively. 

AL%ALV parameters describing distortion of nucleon 
wave functions introduced in Eq. (5). 

V,V,Vm nucleon-nucleus, nucleus-nucleus, and aux
iliary shell-model potentials as defined in 
Eqs. (8a), (15), and (19). 

Vo,Ro,a nucleon-nucleus optical parameters obtained 
from experimental elastic scattering data. 

yL
l homogeneous logarithmic derivative of radial 

wave function defined below Eq. (9). 
8E8,5EP single nucleon energy shifts of individual ^ 

and p nucleons in presence of second nucleus. 
KL = aL+ibL nuclear part of complex nucleus-nucleus 

phase shift. 
r/ nucleon radial coordinate relative to the 

center of the emitter and receiver nuclei. 
p,ps& reduced width and single-body reduced-width 

parameters defined in Eq. (18). Their units 
are (length)3. 

II. CALCULATIONS 

The basic ideas for the calculation6 of the long-range 
potential tail, suggested to the authors by Professor 
G. Breit, are as follows. In an adiabatic description of 
the process, when two complex nuclei are so far apart 
that the tails of the individual nucleon wave functions 
from one nucleus penetrate the other only slightly, a 
small change in the total energy of the system takes 
place, which according to Born and Oppenheimer may 
be considered as a contribution to the potential energy 
between the two nuclei. The change AE, in the total 
internal energy of the system, from that at infinite 
nuclear separation is then given by7 

A£=(¥<°\ff '¥)/(¥<°>/lO, (1) 

where H' is the many-body interaction energy between 
the two nuclei and ^ and ^ ( 0 ) are the exact many-body 
distorted and undistorted wave functions of the system 
respectively. This total change in the energy is a func
tion of the internuclear separation R. In the adiabatic 
approximation the motions of the individual nucleons 
are supposed to be fast compared to the motion of the 
centers of the two nuclei, and the problem is thereby 
reduced to the consideration of the motion of the 
nucleons about two fixed-force centers. For each inter
nuclear separation R, AE is calculated by means of 
Eq. (1) and the resulting function of R is taken as a 
nucleus-nucleus potential energy function in a two-body 
Schrodinger equation in much the same spirit as that 
of the Born-Oppenheimer approximation. Since Hf is 
the interaction between the nucleons of one nucleus 
with those of the other, the integral in the numerator 
of Eq. (1) involves the tail of the nuclear wave function 
of the first nucleus in the region where it overlaps the 
second, and vice versa. For large internuclear separa
tions and large distances from the center of a given 
nucleus, the density of nuclear matter is small and 
consequently the nuclear wave function in this part of 
space is approximated by the product of the tails of the 
individual nucleon wave functions, the coupling be
tween them being considered to be negligibly small. On 
account of the general connection between phase shifts 
and energy7 the contribution of the many body Hr to 
AE arising from each nucleon tail is then equal to that 
produced by an equivalent nucleon-nucleus optical 
potential provided the latter may be suitably extra
polated to negative energies. For positive nucleon 
energies the nucleon-nucleus optical potential V(r) 
produces the same phase shifts as H', and this (energy-
dependent) potential has been determined from the 

6 Proceedings of the Second Conference on Reactions Between 
Complex Nuclei, Gatlinburg, Tennessee, I960, edited by A. Zucker, 
F. T. Howard, and E. C. Halbert (John Wiley & Sons, Inc., New 
York, 1960), p. 127; Proceedings of the Third Conference on Reac
tions Between Complex Nuclei, edited by A. Ghiorso, R. M. 
Diamond, and H. E. Conzett (University of California Press, 
Berkeley, California, 1963); Bull. Am. Phys. Soc. 8, 61 (1963). 

7 G. Breit, Rev. Mod. Phys. 23, 238 (1951). 
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scattering data by various authors8 with varying degrees 
of sophistication, the more variable parameters em
ployed the better the reproduction of the data. All of 
them "mock up" the removal of particles from the 
elastic scattering beam (inelastic scattering, reactions) 
by a complex part to the optical potential which goes 
to zero as the energy goes to zero. In the present work 
the nucleon tails correspond to bound (negative energy) 
nucleons and the energy-dependent parameters of the 
optical potential are extrapolated to negative energies 
linearly. There is of course some question of the validity 
of this linear extrapolation. 

Under the assumptions of the preceding paragraph, 
if the many-body wave function were normalized such 
that 

(tf(O)^(O)) = 1 

then with the neglect of the second order changes in 
the wave function tail of one nucleon in the vicinity of 
the receiver nucleus due to the presence of another 
nucleon wave function tail, the total AE splits up into 

since the V is nonzero only in this vicinity and the 
denominator of Eq. (1) is approximately unity, i.e., 

(*«»,*) = 1. (2a) 

In Eq. (2) ^ ( 0 )(ri) and ^(r$) are, respectively, the un-
distorted and distorted nucleon wave functions from 
one of the nuclei and R is the vector from the center of 
that nucleus to the center of the other nucleus, whose 
effect on each nucleon tail is replaced by the optical 
potential. Equation (2a) represents a further assump
tion in that this calculation is to be applied for inter-
nuclear distances large enough so that the difference 
between the quantity which should have been in the 
denominator of Eq. (2), 

and the normalization integral 

(*<V(0)U 
gives rise to a contribution in AE which is of higher 
order and can be neglected. The symbol \f/ is used for 
the single-body wave function without spin, in contra
distinction to the many-body ^ of Eq. (1). 

At large distances from one of the nuclei, the un-
distorted individual nucleon wave functions of nucleons 
emanating from that nucleus are denoted by ^z,m(0). 
Here hi denotes the angular momenta about that 
nucleus, and km is the projection along the polar axis 
chosen to be in the R direction. For 1=0 and 1, respec
tively, the corresponding wave functions are given 

outside the parent nucleus by 

rPo,o(0) = cs^(l/as^r) exp( -a s < 0 V)F 0 , o (M , 

as^=(2fn\EsW\/Wyi\ 

^i,» ( 0 ) = Cp ( 0 ) [ (V«P ( 0 )O+(l /ap^f) 2 ] 

X e x p ( - V ° > r ) F i i m ( M , 
ap^={2ni\Ev^\/Wyi\ (3) 

where Es
i0) and Ep

{0) denote the unperturbed s and p 
state nucleon binding energies and the real constants 
cs

(0) and cp
{0) are determined by the values of the 

respective ^ ( 0 ) ,s at the nuclear surface. Higher angular 
momenta are not needed for the p-shell nuclei under 
consideration. 

The s-wave function, 1=0 for one nucleus, when 
expanded in terms of spherical harmonics centered on 
the nucleus is given by9 

00 

^o,o(0) = C s < 0 > E a s ( a 8
( 0 ) ^ ) 

A £ = E U(»*(ii)V(\-R-ii\)+(ri)dri=i:5Ei (2) with 
XC/L+jfc<oV')/(as<°V')1 '2]F i ,o(0',^) (4a) 

where the primed quantities refer to a frame of reference 
centered at the right nucleus and / „ and Kn are Bessel 
functions of imaginary argument where the notation 
agrees with that employed by Watson.9 A similar 
expression may be derived for the p-wa.ve functions 
using the relations10 

{<x)-zV{d/dx'±id/dy') 

X [ ( / ) - 1 / 2 / i + j ( a r ' ) P i ( c o s e ' ) ] = 

r ( Z + 2 ) ( L + l ) Y / 2 

(4*-) i ' iv;r1/2 

X ± V 

2L+1 

— — I YL+i,±1(0',<p')IL+i(ar') 
2L+3 J 

=*=-
r Z C L - i ) - | i / 2 

L 2L-1 J 

d (45r)1/2(ar')~1/2 

«r»«—C(r')-1/»7i r t(ar /)Pi(costf')] = 
dz' 2 L + 1 

f (L+l) 

. (2L+3)1 '2 

-FL_1,o(0')i'w(a>" 
'>) 

8 The parameters used were those of B jorklund (nucleon-nucleus 
optical-model potential) referred to in footnote 13. 

(2L-1) 1 / 2 

When d/dxf±.id/dy' and d/dz' are applied to (4a), the 

9 G. N. Watson, Theory of Bessel Functions (Cambridge Univer
sity Press, Cambridge, England, 1952). 

10 The authors are indebted to G. Breit for having pointed out 
to them the derivation which leads to Eqs. (4b). 
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following expressions result: 

L-0 

where 

^ . o ( ^ ) = [ (2L+l )^ ]~ 1 / 2 

XLLKL^(x)+ (L+l)KL+i(xn, 

f Lp.±i (x) s ± [Z ( L + 1 ) / (2Z+1)*] 1 ' 2 

X [ i T L _ i ( x ) - i r L + f ( x ) ] . 

The distorted-wave functions \f/L,m are calculated on the 
assumption that under the physical conditions of large 
nuclear separation here considered, a region surrounding 
both nuclei exists within the nucleon-nucleus potentials 
are negligible. This region is denoted by I I I . The region 
surrounding the nucleus from which the tails of the 
single nucleon wave functions protrude is denoted by 
I and the region surrounding the "receiver" nucleus, 
outside of which the optical-model potential is negligible 
is denoted by I I . The distorted-wave functions of 
nucleons extending from the surface of region I into 
region I I I are obtained subject to the conditions: (A) 
that in region I I they satisfy the Schrodinger equation 
with optical potential V and energy approximated by 
the unperturbed energy EQ, and (B) that in region I I I 
they be given by 

*o.o = * £ hs^sWR)Zas^rfJ-^ 

XLlL+i(asmr')+AL°K^(as«>V)lYL,o(9'<p'), 

X [ / L ^ ( « p ( 0 ) / ) + ^ L ^ ^ f e ( 0 V O ] F L , m ( ^ , ^ ) , (5) 

where the coefficients AL are calculated by matching 
the logarithmic derivatives of the distorted-wave func
tions in region I I to those in region I I I . 

The potential producing the distortion is that 
described in connection with Eq. (2). As described 
above the many-body interaction energy in region I I 
is replaced by an (energy-dependent) complex optical-
model potential for each nucleon defined so as to 
reproduce the observed nucleon-nucleus scattering for 
positive energies. The real part of this is linearly 
extrapolated to negative energies. The imaginary part 
of the nucleon-nucleus optical potential goes to zero at 
zero energy, but of course this does not mean that there 
is no absorption for the nucleus-nucleus system. Indeed 
it is expected that in the collision of two complex nuclei 
an increasingly large number of inelastic scattering and 
reaction channels are opened up as the bombardment 

energy rises and that the resulting "shadow" scattering 
predominates, at least for the larger scattering angles. 
The success of the Blair procedure as employed by 
Reynolds and Zucker to give fair agreement with their 
N14—N14 scattering data bears out this contention. The 
nucleus-nucleus elastic channel absorption may be 
simulated in several ways, one of which consists in the 
introduction of an imaginary part to the potential 
energy, as is done in the nucleon-nucleus problem. An 
alternative to the use of imaginary potentials consists 
in imposing an ingoing wave boundary condition on 
each partial wave.11 For certain complex optical-model 
potentials use of an ingoing wave boundary condition 
gives close agreement12 with the optical-model phase 
shifts for the important range of L values. Both proce
dures will be employed. Even for forward angle scatter
ing the cross section is not completely insensitive to this 
phenomenologically added absorption. Nevertheless it 
is possible to obtain information concerning the size of 
the nucleon wave function at the nuclear surface from 
the calculated tail of the potential. 

Equation (5) differs from Eq. (4) in that to each 
partial wave with radial function JTz,+$(a8

(0V)/'(a*(0V)1/2 

is added a small amount of the other solution, 
KL+$(as

(0)r')/(a8
i0)rf)112 irregular at the origin of the 

"receiver" nucleus, but finite elsewhere. Condition (B) 
ensures that logarithmic derivatives of the undistorted 
and distorted nucleon wave functions become nearly 
equal at the surface of the parent nucleus for large 
enough nuclear separation distances. A knowledge of 
the logarithmic derivatives of the nucleons' wave func
tions at this surface, determinable from their boundary 
energies, is all that is required and no specific nuclear 
model need be assumed. In region I I the distorted wave 
functions for s and p waves are given by 

^ z , w = E NL
l>™uL

l(r')YL,m(d',<p'). (6) 
L 

In the above I stands for angular momentum with 
respect to the "parent" nucleus while L stands for 
angular momentum with respect to the "receiver" 
nucleus. The functions uj} are solutions of the radial 
equation, 

(d2/dr'2)(r'uL
l) 

[2m £ ( £ + 1 ) 1 
+ — [E ,<o>-F]+ ( r W ) = 0, (7) 

I h2 r'2 J 

obtained by numerical integrations performed with the 
aid of an IBM-709 computer. The Ni}'m are normaliza-

11 An ingoing wave boundary condition has been used pre
viously in heavy-ion calculations by R. L. Becker (unpublished) 
following the procedure used by H. Feshbach and V. Weisskopf, 
Phys. Rev. 76, 1550 (1949) for the case of neutron-nucleus 
interaction. 

13 G. H. Rawitscher (to be published). 
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FIG. 1. Distortion of the radial wave function of a nucleon bound 
to C12 by an optical potential representing the nucleus of O16. The 
distance from the center of C12 is measured by r; r' is the distance 
from the center of O16. For comparison the nuclear matter densities 
of the nuclei are also shown by the curves labeled M.D. in order 
to illustrate the very small matter overlap at a nucleus-nucleus 
distance of 9 F. The optical potential responsible for the distortion 
is shown in the lower half of the figures. 

tion constants. The optical potential used has the form13 

V= F o / { l + e x p [ ( r - i ? 0 ) A ] } (8a) 

with extrapolated value VQ lying between —50 and 
- 6 0 MeV, and with 

i?o=1.25X,4 1 / 3F, 

a=0.65 F . 
(8b) 

Matching the logarithmic derivative of the wave func
tion in region I I to that in region I I I fixes the value of 
the coefficient AL as follows: 

^L'=-cwri)/K î(ri)] 
xw-crf/tfoincwr,1'*)]/ 

[ ^ - ( J A / f 0 1 n ( i W f < 1 / 2 ) ] , (9) 
where 

yL'= ll/a^2(d/dr') lnu(r') \ r , „ h . 

13 F. Bjorklund, in Proceedings of the International Conference on 
the Nuclear Optical Model, edited by A. E. S. Green, C. E. Porter 
and D. S. Saxon (Florida State University, Tallahassee, 1959), 
p. 1, slide 2. The imaginary part Wo extrapolates to zero at zero 
nucleon energy and below. This of course implies in no way that 
there is no absorptive part of the nucleus-nucleus interaction. The 
spin orbit part of the potential is neglected in the calculation 5E 
since its peak value at the nuclear surface is at most 15% of the 
value of the central potential. Hence its contributon to 8E is nearly 
linear in (l-s) and become very small when averaged over the spins 
of the nucleons. 

Despite the large size of the AL\ for values of R for 
which AE is calculated the ratios of 100XALXKL+$/ 
IL+\ are always less than 6%. Values of the AL

V are 
given in Table I for the cases of O16 scattering on C12 

and of N14 on N14. As noted previously, b is a distance 
from the center of the right nucleus beyond which the 
nucleon-nucleus potential is negligible. An example of 
a radial nucleon wave function UQ1 which is a solution 
of Eq. (7) for the C 1 2 - 0 1 6 case with Z=l , L = 0 , is 
shown in Fig. 1. For comparison the unperturbed wave 
function is also shown. Nuclear matter densities14 and 
the optical potential are shown in the same figure to 
illustrate the limitation on the region of applicability 
to this approach. 

To facilitate the evaluation of the integrals in Eq. (2), 
Green's theorem and the Schrodinger equations for \f/ 
and \f/(0) are used to transform the volume integral into 
surface integrals. This leads to the following expression 
for 8Eii 

m=-
> / . (h2/2m) / (^(°>*V^-*W ( 0 )*) • dS 

(10) 

fWfdri 
I+III 

where the integral in the numerator extends over the 
surface of region I I which is taken as a sphere of radius 
a, while the volume integral in the denominator excludes 
region I I . Hence setting the latter equal to 1 is a some
what different approximation from the one originally 
stated in connection with Eq. (2b). The latter requires 
that 

^(o)*(^_^(o)) j r + / ^ ( 0 ) * ( ^ - ^ ( 0 ) y r ^ 0 , (11) 

' I+III 

while in the former 

- / • 
J n 

I ^ (o ) ' ( ^ -^ (o ) )^ r - I ^(o)YWrfr-O. (12) 
J I+III J II 

If (11) is a good approximation (12) will be also since 
the identical first terms in the two expressions are small 

TABLE I. Coefficients Aj? for the C12—O16 interaction, calcu
lated using a (real) Woods-Saxon potential [Eq. (8a)] with 
parameters F 0 = - 5 0 MeV, a = 0.650 F, R = 1.25A1* F. 

L 

0 
1 
2 
3 
4 
5 

ALP 

(15.6-MeV neutron) 

473.7 
623.3 
150.9 
31.19 

7.19 
1.09 

ALP 

(18.7-MeV neutron) 

204.78 
310.94 
57.28 
12.17 
2.03 
0.26 

14 H. F. Ehrenberg and R. Hofstadter, Phys. Rev. 113, 666 
(1959), Eq. (A). 
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if ^—^0) is small in regions I and III, i.e., everywhere 
but in the second nucleus; while the smallness of the 
nonidentical second terms depends on the same circum
stance, namely, the smallness of \pm in region II. 
Substitution of Eq. (5) into Eq. (10) leads to the 
following expression for the s-state nucleons: 

8ES= - {hy2m){_cscs^/as^~] £ AL'£tL'(a.«»R)J, (13) 
L=0 

where cs and cs
(0) are as in Eqs. (3) and (5), respectively. 

The corresponding expressions for three ^-state 
nucleons, summed over the three values of m lead to 

35EP = - (ft2/2f»)[3c^<°Vap(0)] 

-100 rr 

xEi t»EKrt3)] !, (14) 

where cp and cp
(0) are the quantities which occur in 

Eqs. (3) and (5). To obtain the long-distance part of 
the nucleus-nucleus potential energy function the con
tributions from Eqs. (13) and (14) are summed over 
the nucleons whose wave function tails originate in 
region I. To this is added a similar contribution obtained 
by interchanging the roles of two nuclei, the one which 
formerly had served as a potential field for the nucleon 
wave function tails (region II) now assuming the role 
of a nucleus from which the tails of the wave functions 
of individual nucleons are pictured as protruding 
(region I). The other nucleus which had formerly 
served as the source of the nucleon wave function tails 
now assumes the role of an optical potential field. 
Higher order corrections in which, for example, the 
optical potential is modified by the distance of the 
nucleus in region II caused by the "tails" from region I, 
are neglected. 

Strictly speaking the above procedure applies only 
to neutrons. However, as an approximation, in the 
summation over nucleons the proton contributions are 
taken equal to those of the corresponding neutrons 
because for the nuclei here considered, C12, O16, and N14, 
the reduction of the size of the proton wave function 
in region II due to the added repulsion of the ^2-MeV 
Coulomb barriers is compensated to some extent by 
enhancement of this wave function in region II due to 
the decrease of about 2 MeV in the binding energy of 
protons compared to the corresponding binding energy 
of neutrons for these nuclei. However as discussed in 
Breit and Ebel16 for N14—N14 tunneling, the enhance
ment appears to overcompensate the reduction. 

The resulting expression for AE(R) is used in the 
next section as a two-body potential-energy function to 
approximate the nucleus-nucleus interaction for suffi
ciently large values of R. It still contains the undeter
mined constants £p(0), cp for each of the two nuclei which 

6 . 7 . 8 9 10 
In ternuc lear Distance , R ( f e r m i s ) 

15 G. Breit and M. E. Ebel, Phys. Rev. 103, 700 (1956). 

^ FIG. 2. Calculated nucleus-nucleus AE potentials using the 
single-particle reduced-width parameters ps& given in Table III . 
These curves must be multiplied by factors of 0.16, 0.14, and 0.17 
for the O—C, C—N, and N—N systems, respectively, so as to 
obtain near agreement with experiment, as described in the text. 

are proportional to the single particle reduced widths 
described in Sec. III. The value of this constant is 
adjusted to fit experiment and the reduced width is 
thereby determined. Examples of the potentials so 
determined for the systems C12—O16, C12—N14, and 
N1 4-N1 4 are illustrated in Fig. 2. 

For small internuclear separation distances R the 
method of calculation of the interaction between the 
two nuclei cannot be expected to be valid since the 
nuclei are significantly deformed by one another's 
presence, each nucleus may become excited either 
actually or virtually, etc. Fortunately the elastic 
scattering cross section is not very sensitive to the 
exact R dependence of the real part of the potential for 
small values of R, e.g., for values of R less than that at 
which the real part of the Coulomb plus nuclear poten
tial vanishes, so long as there is sufficient absorption. 
By absorption is meant any process which removes 
particles from the elastic scattering beam. These 
processes cause the nuclear phase shifts KL to become 
complex, 

with dL and bL both real. An attempt at a full solution 
of the problem with the allowance for the opening of 
many channels is of course not practical; so the effects 
of the inelastic and reactions processes may be simulated 
in the usual ways, either by the addition of a complex 
part to the potential energy or by the imposition of a 
boundary condition.11'12 Both methods have been 
employed in this work. The effect of either procedure, 
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FIG. 3. Arbitrary modifications of a real nuclear plus Coulomb 
potential VN-\- Vc introduced in order to investigate the sensitivity 
of the cross sections to the value of the potentials in the region 
where the modifications were made. To the potential curve (1) 
Gaussian-shaped "bumps" of magnitudes 5 and 10 MeV have 
been added as shown in curves 2 and 3, respectively. For com
parison the imaginary part of the potential, W, is also shown. 
Results for phase shifts are shown in Table III. 

when compared to the results obtained in the absence 
of absorption, is to shift the angular positions of the 
maxima and minima of the ratios of the cross section 
to the Coulomb cross section and in addition to reduce 
great] y the amplitudes of the peaks and valleys in the 
angular distribution curve. 

For convenience in calculation, the AE potential has 
been arbitrarily rounded off for internuclear separation 
of less than about 6 F and the resulting potential is 
denoted by V(R). For amounts of absorption necessary 
to give fits to the experiment under consideration large 
modifications in the real part of the potential inside 
this distance produce little change in phase shifts. 
Although it is difficult to formulate the effect precisely 
an example may serve to illustrate the point. Figure 3 
shows a plot of a typical AE plus Coulomb potential 
for N14—N14 scattering, but not the one with the 
properly adjusted cp. The R dependence of V is either 
the one suggested by Woods-Saxon 

•0 (R) = Do/Cl+expOR- (R)/a] , (15a) 

with a determined by the calculated value of AE(R) 
and (R so adjusted that the rounding off of the potential 
is negligible beyond 6 F, or else 

V(R) = V0' e x p ( - £ / a ) (15b) 

is also used in connection with the ingoing wave 
boundary (IWB) procedure. Curve (1) exhibits a typical 

rounding off and in curves (2) and (3) modifications 
have been arbitrarily added to this potential inside 6 F. 
The modifications are "bumps" with Gaussian shapes, 
of width 2 F and magnitudes 5 and 10 MeV, respec
tively. On the same figure is plotted the empirical 
imaginary part of the potential W. In Table I I are 
shown the effects of the added potential "bumps" on 
exp(— 2BL), exp(—2bi) sin2az,, combinations of the 
real and imaginary parts of the phase shift used directly 
in the cross-section calculation at 12 MeV. The agree
ment between the three sets of values is typical of those 
for N14—N14 and C12—N14 scattering at the energy 
under consideration, and the differential cross sections 
computed from the three are almost indistinguishable. 
This is understandable for the case in which the absorp
tion is strong and takes place mostly inside the Coulomb 
+centrifugal+nuclear barrier. For the smaller L waves, 
the real phase shifts aL are modified by a change in the 
potential, but these waves are in any case strongly 
absorbed and the cross section is little changed. For the 
higher partial waves the values of $L(R), where &L(R) 
is a solution finite at the origin of the radial equation 

+\~ZE-V(R)-]- \$L(R) = 0, (16) 
dR* [ft2 R2 \ 

are small because of the centrifugal barrier in the region 
of the added hump. Thus the phase shifts are little 
modified. Likewise, changes in the shape of W, so long 
as (a) W is large at distances smaller than the barrier 
region and (b) the tail of W does not extend significantly 
into this region, have been found to produce little 
change in the cross section. Typical examples of various 
W's are shown in Fig. 4 and the resulting ratios of the 
cross sections to Rutherford in Fig. 5. 

TABLE II. Effect of potential changes on phase shifts. The 
nuclear phase shifts are denoted by KL = aL+ibL. The numbers 
in parentheses refer to the potential curves shown in Fig. 3. The 
results labeled IWB are obtained from the potential curve (2) and 
the imposition of the ingoing wave boundary condition on the 
wave function at i? = 4 F, as described in the text. The table 
illustrates that the introduction of potential "bumps" at distances 
less than 6 F does not appreciably affect the phase shifts and or 
cross sections. 

L 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

I W B 

0.087 
0.093 
0.106 
0.128 
0.164 
0.220 
0.307 
0.440 
0.626 
0.826 
0.951 
0.991 
0.999 
1.000 

expC-
CD 

0.090 
0.070 
0.106 
0.102 
0.156 
0.192 
0.295 
0.427 
0.630 
0.822 
0.938 
0.982 
0.995 
0.998 

- 2 & L ) 

(2) 

0.098 
0.078 
0.115 
0.111 
0.169 
0.201 
0.307 
0.430 
0.630 
0.818 
0.938 
0.981 
0.994 
0.998 

(3) 

0.109 
0.093 
0.129 
0.126 
0.184 
0.214 
0.320 
0.431 
0.627 
0.811 
0.937 
0.982 
0.994 
0.998 

I W B 

- 0 . 0 7 9 
- 0 . 0 8 0 
- 0 . 0 8 0 
- 0 . 0 7 4 
- 0 . 0 5 5 
- 0 . 0 1 5 

0.049 
0.138 
0.223 
0.235 
0.153 
0.072 
0.030 
0.012 

exp (—2&L) sin2az, 

(1) 

- 0 . 0 9 0 
- 0 . 0 7 0 
- 0 . 0 9 6 
- 0 . 0 8 3 
- 0 . 0 7 1 
- 0 . 0 4 5 

0.043 
0.114 
0.216 
0.204 
0.136 
0.066 
0.029 
0.012 

(2) 

- 0 . 0 9 8 
- 0 . 0 7 6 
- 0 . 1 0 4 
- 0 . 0 8 4 
- 0 . 0 7 7 
- 0 . 0 4 4 

0.037 
0.107 
0.208 
0.202 
0.136 
0.066 
0.029 
0.012 

(3) 

- 0 . 1 0 8 
- 0 . 0 8 7 
- 0 . 1 1 4 
- 0 . 0 9 0 
- 0 . 0 8 8 
- 0 . 0 4 7 

0.025 
0.098 
0.197 
0.201 
0.173 
0.067 
0.029 
0.012 
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FIG. 4. Plots of various imaginary potentials W used to demon
strate the insensitivity of the cross section to W. The explanation 
for the parametrization of W as a function of r is given in Fig. 5, 
which also shows the resulting cross sections. 

As an alternative to the addition of a complex part 
to the potential, absorption inside a given value of R, 
say Rb^1.2 F (^4i1/3+^21/3), may be obtained by using 
for each L a one-dimensional boundary condition 
imposed at Rb. If it is assumed that a two-body nuclear 
potential is valid at least down to Rb and if Rb is far 
enough inside of the barrier formed by the nuclear, 
Coulomb and centrifugal potentials—henceforth called 
simply barrier—so that the JWKB approximation be
comes valid for the significant values of L and if the 
outgoing branch of the JWKB expression for the wave 
function is set equal to 
functions are given by 

zero,12 then the radial wave 

ffj XR) = hL{R)~^zxI-i( kL{r)dr\ 

kL(r)-= 
2/x ZCZH-l)!^/2 

fi2 1 
(17) 

parameters introduced into W and in rounding off V are 
superfluous and that in reality the only empirically 
added parameter to which the results are sensitive is 
one of the reduced width type, p, defined below. This 
of course implies the validity of the AE potential in the 
barrier region. The value of Rb is chosen sufficiently 
smali to be well inside the barrier so that the JWKB 
approximation is valid. The largest values of Rb where 
this is true were found to be between 1.20 F and 1.25 F 
times Ai1,s+A21,z a t which point some many-body 
features probably still persist and the calculated two-
body potential is therefore probably not valid. Since 
the high L contributions to the cross section do not 
depend strongly on the close-in interaction and the low 
L contributions are small on account of the large effect 
of absorption, it is the 3 or 4 intermediate L contribu
tions whose validity is most questionable in the calcula
tions reported on in this paper. Strictly speaking either 
the procedure of using a complex potential or of 
describing its effect by the IWB method may be looked 
on as calculational methods of obtaining values of the 
quantities exp(— 2bL), exp(—2b£) sin2#L which vary 
smoothly with L in such a way as to describe the 
experimental facts. 

The considerations following Eq. (12) of Sec. I I show 
that the nucleus-nucleus potential is formed from a sum 
of terms each of which is proportional to the product of 
the constants cp

(0) and cp which furnish the unknown 
values of the nuclear wave functions at the nuclear sur-

i.o 

In this case the resulting phase shifts are uniquely 
determined and are independent of the value of the 
nuclear potential for r<Rb. The nuclear wave functions 
are then obtained by imposing at Rb the IWB boundary 
condition 

(d$L/dR)/$L= [ - \ (dkL/dR)/kL-ikLlr=Rb 

and the resulting phase shifts lead to essentially the 
same scattering cross sections12 as a certain class of 
potentials the real parts of which vary widely inside R0. 
Use of the IWB has the advantage of exhibiting the 
fact that for strong enough absorption several arbitrary 
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FIG. 5. Sensitivity of the cross section 
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face. In principle each ^-wave nucleoli has a separate 
cp

w and cp. In view of the crudeness of some of the 
aspects of the theory it was not felt warranted to treat 
the pi/2 nucleons differently from the pz/2 nucleons in all 
cases even though appreciable differences exist occa
sionally. However in O16, for example, the binding en
ergy of a ^3/2 nucleon as determined from the p—pf in
elastic scattering experiments16 is approximately 23 
MeV which is considerably larger than the separation 
energy of the p1/2 nucleon which is 15.6 MeV. In order 
to evaluate the effect on AE due to this relatively large 
difference in separation energies a sample calculation 
was done in which it was found that the contribution 
to AE of three p neutrons bound at 23 MeV is roughly 
half of the corresponding quantity for neutrons bound 
at 15.6 MeV for R between 7 and 8 F. Therefore, it was 
felt that eight p nucleons bound with 15.6 MeV would 
be reasonably equivalent to the four p1/2 nucleons 
+eight pz/2 nucleons, and the calculations have been 
so carried out. In the cases of C12 and N14, the contribu
tion to AE of four s nucleons were neglected because of 
their large separation energy and the rest of the 
nucleons were treated as having the same separation 
energy of 18.7 and 10.54 MeV, respectively. 

The contribution of the s nucleons was neglected 
altogether since their number is less than half of the 
number of p nucleons for all the nuclei here considered 
and, from the above pz/2—pi/2 comparison, their contri
bution to AE should be less than a 20% of the total 
value. Consequently two unknown parameters remain, 
one for each of the two heavy nuclei. These are denoted 
by p and p' and are given by 

p' = cp«»'cp'. (18) 

The value of V0 of Eq. (15a) is first determined so as 
to give the best fit between the experimental17 and 
theoretical nucleus-nucleus scattering cross sections, 
and then, from the knowledge of the R dependence of 
the 5Ep's, a relation involving p and p is obtained. By 
considering the system N14—N14, p=p '=p(N 1 4 ) can be 
determined. From this value and the knowledge of Do 
for the N14— C12 system, p(C12) can in turn be obtained, 
and the results are contained in Table I I I . 

The parameter p is directly proportional to the 
average reduced widths of the bound nucleons. I t is 
convenient to express it in terms of a fictitious "single-
particle" quantity pSb, which is obtained by considering 
the wave function of a single-particle bound to a real 

16 H. Tyren, P. Hillman, and Th. A. T. Maris, Nucl. Phys. 7, 10 
(1958). 

17 J. A. Kuehner and E . Almqvist, Bull. Am. Phys . Soc. 6, 48 
(1961). The authors are very grateful to Dr . Almqvist for provid
ing supplementary unpublished da ta for N14—C12 and O16—C12 

scattering. Their results differ somewhat from the earlier da ta 
reported by M. L. Halbert , C. E . Hunt ing, and A. Zucker, Phys . 
Rev. 117, 1545 (1960), also shown in Fig. 6. 

T A B L E I I I . Rat io of reduced width parameter p to single-body 
parameter p.,*,. The latter is calculated from the potential given 
in Eq . (19). 

Nucleus Psb p/psb 

C12 48.0 F~3 0.15 
N14 6.9 0.17 
O16 41.0 0.16 

potential well of a Woods-Saxon type 

Vm= Vom{l+expl(r~-1.2(A-iy^ F)/0.50 F ] } " 1 . (19) 

The value of Vom is determined by demanding that the 
p nucleon be bound at the experimentally observed 
separation energy, and from the knowledge of the 
normalized wave function, cs&

(0) can be determined. The 
square of the absolute values of the s and p wave 
functions bound by this well can then be used to deter
mine a nuclear density, and comparison with the charge 
densities determined from electron scattering14 shows 
reasonable agreement, as illustrated in Fig. 6. 

In Table I I I the values of p as well as of p/pSb, as 
determined by the procedure described above, are 
shown for C12, N14, and O16. The choice of csh

(0) and 
hence the value of p/pSb is dependent upon the model 
assumed for the undistorted nuclei. For the N14 nucleus, 
a square well of radius 3.22 F and depth 35 MeV binds 
a p nucleon at —10 MeV, and the value of csb

(0) is 
2.35 F~3/2, which is to be compared with a value of 
2.63 F~3/2 obtained when the square well is replaced by 
a Woods-Saxon well. These potential wells are chosen 
so that the resulting charge distributions approximate 
those obtained from electron scattering experiments14 

as shown on Fig. 6, in whose figure caption the explicit 
form of the charge density obtained from electron 
scattering is given, and are not the same as the nucleon-
nucleus optical potentials used above. The matter 
distribution derived from the s and p nucleons bound 
by the square well fit the experimental charge distribu
tion reasonably well. If the radius of the square well is 
changed to 3.5 F, and the depth chosen so that a p 
nucleon is bound at the same —10 MeV, then the 
corresponding value of cs&

(0) is 2.97 F~3/2 but the matter 
distribution no longer approximates the experimental 
one as well, as is also illustrated in Fig. 6. The three 
potentials mentioned in the examples above lead to 
values of psh which differ from each other by about 50% 
or less. The value of (p/ps&)o" is not well determined 
since the procedure used in this paper does not repro
duce the wiggle in the cross sections, although giving a 
good over-all fit. I t may be noted that p/pSb appears to 
vary less with atomic weight A than does p itself. If the 
value of cp is assumed equal to cp

(0\ then cp
m can be 

obtained as the square root of p given in the table, and 
the corresponding value of the nucleon wave function 
beyond the nuclear "surface" is given by Eq. (3). A 
value for the usual reduced width parameter y2 can 
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thus be obtained. For N14, if the nuclear radius b is 
taken equal to 3.22 F, then18 T 2 = &/(2rn/W)^lA$ 
MeV F. This quantity, when expressed in units of 
3ft2/(2 mb), is equal to 0.12, which of course depends 
on the choice of b. A source of error in the determination 
of the value of p is due to the uncertainty in the theoret
ical value of AE. This uncertainty increases with 
decreasing internuclear separation, as the distortion and 
matter overlap between the two nuclei increases. At 8 F, 
which is the distance for which the sum of nuclear plus 
Coulomb potentials, as used in the fits to experiments, 
reaches a broad maximum, the overlap integral of the 
distorted and undistorted nucleon wave function, 
(^(0),^), differs approximately by 20% from unity for 
the three nucleus-nucleus systems investigated. For this 
estimate the value of p is assumed identical to ps&, and 
\^(0) is assumed equal to the expression given in Eq. (3) 
for all values of r. Since p<pSb, this overlap estimate is 
considerably too large perhaps by a factor of « 2 but it 
nevertheless serves as an indication for the theoretical 
uncertainty in AE due to wave function distortion 
effects not taken into account. At that distance the 
overlap of the matter density of the two nuclei, if 
assumed undistorted, is less than 1%. In order to 
investigate the sensitivity of p to the uncertainty in AE, 
various arbitrary modifications of the nuclear potential 
in the barrier region were performed. For example, 
various smooth changes in AE which produce 10% 
modifications in AE at distances of 2 F, 1.4 F, and 0.6 F 
to the left of the top of the barrier, which in this 
example is at 8.6 F, result in changes of 3, 8, and 33%, 

FIG. 6. Matter densities for N14 for various choices of the 
auxiliary potential VM, Eq. (19). Curve a represents the charge 
density obtained from electron scattering experiments,14 given by 
p = [ (1 +r2/a0

2) exp ( - r2Ao2) H/O1 %o3 (2+3a) ] with a0 = 1.8 F and 
an = 5/3. Matter densities computed from s and p nucleon wave 
functions corresponding to the Woods-Saxon potential, Eq. (19), 
and to square-well potentials with radii 3.22 and 3.50 F are given 
by curves b, c, and d, respectively. The depths of all potentials are 
chosen so that a p nucleon is bound with an energy of —10 MeV. 
The densities of two s-wave nucleons are averaged with those of 
seven p-w&ve nucleons. The values of ps& corresponding to curves 
b, c, and d are 6.9, 5.5, and 8.8 F~3, respectively. 

18 G. Breit, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1959), Vol. 41, Part 1, Sec. 33. 

FIG. 7. Sensitivity of cross section to modifications of the 
potential in the "barrier region." The curves b, c, and d join 
curve a smoothly at 7 F, 7.5 F, and 8 F, respectively. The potential 
marked a is the same as potential (1) in Fig. 3. The corresponding 
cross sections are shown in the insert. The IWB condition was 
used in all the calculations at approximately 5 F. The difference 
between cross sections a and b is apparently due to difference of 
the steepness of the two potentials. The similarity of the cross 
sections at angles less than 60° is presumably connected to the 
fact that all potentials have the same maximum at about 8.5 F. 

respectively, of the cross section at an angle where the 
cross section is nearly J of the Coulomb cross-section 
value. These results are illustrated in Fig. 7. These 
changes would lead, respectively, to changes in p by 
factors of roughly 1.2, 1.5, and 3. I t is therefore believed 
that an uncertainty estimate in p of a factor 2 is 
conservative. 

Comparison between theoretical and experimental17 

cross sections is shown in Fig. 8. The over-all fit to 
experiment is reasonable, although small oscillations 
are not reproduced in detail. These may well be due to 
features in the interactions not accounted for by the 
somewhat rough assumptions made in this work. For 
example, if resonances for particular L waves should 
occur,19 phase shifts derived from two-body potentials 
may prove insufficient for the description of experi
ments. Indeed as mentioned above reasonable fits to 
experimental data17 for C12—O16 scattering at 8-, 9-, and 
10-MeV center-of-mass energies are obtainable with the 
procedure outlined above employing the same potential 
in all three cases. At 11.57 and 13.67 MeV, fits are not 
possible indicating that some more complicated feature 
has entered. 

19 D. A. Bromley, J. A. Kuehner, and E. Almqvist, Phys. Rev. 
123, 878 (1961). 
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FIG. 8. Comparison of theoretical with experimental angular 
distributions. The fits are obtained by varying the parameter Vo 
given in Eq. (15a), as explained in the text. (R in Eq. (15a) is not 
a "significant" parameter and a is obtained from theoretical 
considerations. The values listed in Table III are obtained from 
the best fits, shown here. The numbers indicated for the two 9.92 
MeV N14—C12 curves indicate the factors by which the AE 
potential shown in Fig. 2 must be multiplied so as to obtain the 
corresponding cross sections. 

Finally, it may be noted that even at the high 
energies, where the assumptions made in the theoretical 
treatment outlined above are not expected to be valid, 
a reasonable agreement with experimental O16—C12 

and C12—N14 cross sections20-21 is obtained, as shown in 
Fig. 9. The reduced width parameters employed in these 
comparisons are the same as those used for the low-
energy fits, and are given in Table I I I . 

In Fig. 10 the absolute value of the potentials used is 
plotted against the nucleus-nucleus distance R. The 
curve labeled AE corresponds to an average of the 
potentials shown in Fig. 2, calculated employing single-
particle reduced widths. The curve marked " A E / 5 " 
represents an average of the potentials used in fitting 
the experimental cross sections, as shown in Figs. 8 
and 9. The ratio of potentials at the same R for the two 
curves is approximately J. The exact value of this ratio 
is p/psb of Table I I I . The curve labeled Ov represents 
the overlap integral 

!> 

matter density of the first nucleus at a point displaced 
by vector rx from the center of nucleus 1. The displace
ment vector from the center of the second nucleus to 
the center of the first is denoted by R and the vector 
from the center of the second nucleus to a point P by r. 
The optical-model potential of a nucleon at point P 
exposed to the field of the second nucleus is designated 
by F2(r). 

On the most naive interpretation of the nucleon-
nucleus optical-model potential the integrand of Eq. 
(20) is the potential energy of the nucleons belonging to 
the first nucleus caused by their interaction with the 
second nucleus. I t is realized that both pi(r— R) and 
F2(r) are affected by the proximity of the nuclei to each 
other, that F2(r) has not been shown to have the simple 
meaning given to it in Eq. (20) and that the velocity 
dependence of V2 is neglected. In addition to the neglect 
of these and other effects having their origin in the 
mathematical difficulties of the many body problem 
and the incompleteness of information regarding 
nucleon-nucleon interactions the value of pi for large 
values of |r— R| , i.e., in the "tail" of the matter-
density distribution curve, is not believed to be known 
with certainty, the main emphasis in the Stanford fits14 

to electron-nucleus scattering data being in obtaining 
the general shape of the pi versus distance curve. The 
precise values obtained from Eq. (20) may thus be 

p 1 ( r - R ) F 2 ( r ) J r = F 1 2 ( R ) (20) 

evaluated for the N14—N14 collision. Here pi(ri) is the 

• Wi l l iams 8 Steigert" 

Theory 

b|c5 
•oho 

blcS 
T>|-0 

4 8 12 16 
Scattering Angle ($c.M.) 

20 D. J. Williams and F. E. Steigert, Nucl. Phys. 30, 373 (1962). 
2i A. M. Smith and F. E. Steigert, Phys, Rev. 125, 988 (1962). 

6 7 8 9 10 II 
Internuclear Distance (Fermis) 

FIG. 9. Comparison of theoretical cross sections with experiment. 
The parameters employed in the theory are the same as those 
used for the low-energy results shown in Fig. 8 and listed in 
Table III. The experiments for 0 1 6 -C 1 2 and C12-N14 are those of 
Refs. 20 and 21, respectively. The lower part of the figure illus
trates the sum of nuclear and Coulomb potentials employed in 
the calculation of the cross sections, 
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FIG. 10. Summary of nucleus-nucleus potentials. The top curve 
labeled AE is an average of the theoretical potential for the 
C1 2-01 6 , C12-N14, and N 1 4 -N 1 4 systems, for which single-particle 
reduced-widths are employed. The individual potentials are shown 
in Fig. 2. The curve labeled Ov represents an overlap integral of 
matter density and nucleon-nucleus optical potential, as described 
in the text, and the lower curve is an approximate representation 
of the nuclear potentials calculated for the reduced widths as 
required from the comparison with the experimental scattering 
cross sections. 

subject to question. It is nevertheless striking that the 
curve Ov obtained in this manner is not in very decided 
disagreement with the curve marked AE/5 in Fig. 10, 
the agreement being good at 7 F and a discrepancy by 
a factor of only about 2 developing at 9.5 F. It may be 
remarked that within the approximations used here 

F12(R)= P2(r)V1(t-R)dr (200 

is an alternative form of the potential energy between 
nuclei 1 and 2. On account of the identity of the two 
nuclei involved there is no difference between (20) and 
(20') m this case. 

CONCLUSIONS 

From this study of the scattering of heavy nuclei by 
heavy nuclei the following conclusions may be drawn: 

(1) That although the forward-angle elastic scatter
ing is not completely determined by the tail of the 
potential calculated from nucleon-nucleus data, if 
sufficient absorption from the incident beam is allowed 
for, then the tail of the potential strongly affects the 
angular distribution and agreement with the over-all 
shape of the experimental angular distribution curve is 
obtained, even though the wiggles may not be repro
duced in detail. 

(2) That the tail of the potential calculated from the 
binding-energy consideration outlined in Sec. II is well 
enough determined by the experimental data on elastic 
scattering to lead to a rough value of the reduced width 
which is of the order"pf one- or two-tenths the single-
particle value. 

The above outlined procedure would appear to be a 
reasonable starting point for further, more detailed, 
calculations taking into account spins, nuclear deforma
tion, Coulomb excitation, nuclear excitation, etc. 

ACKNOWLEDGMENTS 

The authors wish to gratefully acknowledge the 
suggestion by Professor G. Breit of calculating the tail 
of the nucleus-nucleus potential from the nucleon-
nucleus potential and for numerous discussions on all 
phases of the work. They also wish to acknowledge the 
help of Professor R. L. Gluckstern for suggestions 
relating to numerical work in the integration of the 
radial wave equation, of Dr. G. Herling for use of his 
machine program from which some of the Coulomb 
functions were obtained in the early stages of the work, 
and of Dr. D. J. Williams, V. H. Mesch, and particularly 
of J. Polak for help received in machine computations. 


